\qquad

HW5 , Math 531, Spring 2014

Ayman Badawi

QUESTION 1. (i) Let I be an ideal of a commutative ring R. Then the radical ideal of I is denoted by \sqrt{I} where $\sqrt{I}=\left\{x \in R \mid x^{n} \in I\right\}$. Show that \sqrt{I} is an ideal of R.
(ii) Let R be a commutative ring. Show that $\operatorname{Nil}(R)$ is an ideal of R [Hint: since $\{0\}$ is an ideal of R, note that $\sqrt{0}=\operatorname{Nil}(R)]$
(iii) Let R be a commutative ring. Show that $R / \operatorname{Nil}(R)$ has no nonzero nilpotent elements (i.e., show that $N i l(R / N i l(R))=$ $\{\operatorname{Nil}(R)\}$.
(iv) Find an example of a ring monomorphism $f: R \rightarrow S$ where R, S are rings with $1 \neq 0$, but $f\left(1_{R}\right) \neq 1_{S}$. (Note 1_{R} indicates the identity of R and 1_{S} indicates the identity of S)
(v) Let R be a ring with $1_{R} \neq 0$ and let S be a nontrivial ring (i.e., $S \neq\{0\}$). Suppose that $f: R \rightarrow S$ is ring epimorphism. Show that S is a ring with identity $1_{S} \neq 0$
(vi) Let R, S be rings with $1 \neq 0$ and $f: R \rightarrow S$ be a ring homomorphism. Suppose that for some unit u of R we have $f(u)$ is a unit of S. Prove that $f\left(1_{R}\right)=1_{S}$ and $f\left(u^{-1}\right)=f(u)^{-1}$.
(vii) Let $f: R \rightarrow S$ be a ring homomorphism (R, S are rings) such that $f(r) \neq 0$ for some $r \in R$. If R has an identity $1_{R} \neq 0$ and S has no nonzero zero divisors, then prove that S is a ring with identity $1_{S} \neq 0$.
Comment: In view of $v i i$, we can conclude that if f is as in $v i i$ where R is an integral domain and S is a commutative ring with no nonzero zero divisors, then S must be an integral domain.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

