MTH 531 Graduate Abstract Algebra II Spring 2014, 1–1

HW5, Math 531, Spring 2014

Ayman Badawi

- **QUESTION 1.** (i) Let *I* be an ideal of a commutative ring *R*. Then the radical ideal of *I* is denoted by \sqrt{I} where $\sqrt{I} = \{x \in R | x^n \in I\}$. Show that \sqrt{I} is an ideal of *R*.
- (ii) Let R be a commutative ring. Show that Nil(R) is an ideal of R [Hint: since $\{0\}$ is an ideal of R, note that $\sqrt{0} = Nil(R)$]
- (iii) Let R be a commutative ring. Show that R/Nil(R) has no nonzero nilpotent elements (i.e., show that $Nil(R/Nil(R)) = {Nil(R)}$.
- (iv) Find an example of a ring monomorphism $f : R \to S$ where R, S are rings with $1 \neq 0$, but $f(1_R) \neq 1_S$. (Note 1_R indicates the identity of R and 1_S indicates the identity of S)
- (v) Let R be a ring with $1_R \neq 0$ and let S be a nontrivial ring (i.e., $S \neq \{0\}$). Suppose that $f : R \rightarrow S$ is ring epimorphism. Show that S is a ring with identity $1_S \neq 0$
- (vi) Let R, S be rings with $1 \neq 0$ and $f : R \to S$ be a ring homomorphism. Suppose that for some unit u of R we have f(u) is a unit of S. Prove that $f(1_R) = 1_S$ and $f(u^{-1}) = f(u)^{-1}$.
- (vii) Let $f : R \to S$ be a ring homomorphism (R, S are rings) such that $f(r) \neq 0$ for some $r \in R$. If R has an identity $1_R \neq 0$ and S has no nonzero zero divisors, then prove that S is a ring with identity $1_S \neq 0$.

Comment: In view of vii, we can conclude that if f is as in vii where R is an integral domain and S is a commutative ring with no nonzero zero divisors, then S must be an integral domain.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com